Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0191120020170020225
Journal of Korean Medical Science
2002 Volume.17 No. 2 p.225 ~ p.229
The Effect of Intrathecal Gabapentin on Mechanical and Thermal Hyperalgesia in Neuropathic Rats Induced by Spinal Nerve Ligation
Tae Soo Hahm/Hyun Sung Cho
Myung Hee Kim/Duck Hwan Choi/Jung Il Lee/Mi Sook Gwak/Tae Soo Hahm
Abstract
Gabapentin decreases the level of glutamate and elevates that of alpha-amino-butyric acid in the central nervous system. Gabapentin was shown to have antinociceptive effects in several facilitated pain models. Intrathecal gabapentin was also known to be effective in reducing mechanical allodynia in animals with neuropathic pain. In this study, we investigated to see whether intrathecal gabapentin produces antihyperalgesic effects on thermal and mechanical hyperalgesia in neuropathic rats and whether its effects are associated with motor impairment. To induce neuropathic pain in Sprague-Dawley rats, left L5 and L6 spinal nerves were ligated. After a week, lumbar catheterization into subarachnoid space was performed. Then, paw withdrawal times to thermal stimuli and vocalization thresholds to paw pressure were determined before and up to 2 hr after intrathecal injection of gabapentin. Also, motor functions including performance times on rota-rod were determined. Intrathecal gabapentin attenuated significantly thermal and mechanical hyperalgesia in neuropathic rats, but did not block thermal and mechanical nociception in sham-operated rats. Intrathecal gabapentin of antihyperalgesic doses inhibited motor coordination performance without evident ambulatory dysfunction. This study demonstrates that intrathecal gabapentin is effective against thermal and mechanical hyperalgesia, in spite of moderate impairment of motor coordination.
KEYWORD
Gabapentin, Injections, Spinal, Hyperalgesia,
FullTexts / Linksout information
  
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø